Math 102

Krishanu Sankar

September 11, 2018

Announcements

- OSH 0 due tomorrow, OSH 1 due Friday.
- Consider a scanning app - Fast Scanner or TinyScanner.
- OSHs may be submitted as a group of up to 4 students.
- Section canvas page is up - Office hours survey.
- MLC opens Friday Sept 14
- Specific questions and finding study buddies
- For more open-ended questions about OSH, come to OH or post to Piazza.

Last time

- Power Functions, asymptotic behavior
- A polynomial is a sum of any number of power functions

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

- Graphing simple polynomials $f(x)=A x^{m}+B x^{n}$, where $m>n$, and A, B are constants.
- When x is very large, $A x^{m}+B x^{n} \approx A x^{m}$.
- When x is near $0, A x^{m}+B x^{n} \approx B x^{n}$.
- Sketch in between.

Asymptotic Thinking

- Question: Which is the best approximation?

$$
1,000,000+5,000-3 \approx
$$

$\begin{array}{lll}\text { A) } 1,000,000 & \text { B) }-3 & \text { C) other }\end{array}$

- Question: Which is the best approximation?

$$
.000001+.005-3 \approx
$$

$\begin{array}{lll}\text { A) } .000001 & \text { B) }-3 & \text { C) other }\end{array}$

Asymptotic Thinking

- Question: Which is the best approximation?

$$
1,000,000+5,000-3 \approx
$$

$\begin{array}{lll}\text { A) } 1,000,000 & \text { B) }-3 & \text { C) other }\end{array}$

- Question: Which is the best approximation?

$$
.000001+.005-3 \approx
$$

$\begin{array}{lll}\text { A) } .000001 & \text { B) }-3 & \text { C) other }\end{array}$

Asymptotic Thinking

Question: Which is the best approximation?

$$
3,000 \cdot 20 \approx
$$

$\begin{array}{lll}\text { A) } 3,000 & \text { B) } 20 & \text { C) other }\end{array}$

Asymptotic Thinking

Question: Which is the best approximation?

$$
3,000 \cdot 20 \approx
$$

$\begin{array}{lll}\text { A) } 3,000 & \text { B) } 20 & \text { C) other }\end{array}$
$3,000 \cdot 20=60,000$. Our approximation method of bigger term wins doesn't work for multiplication.

Asymptotic Thinking

Question: How would you calculate a simple approximation?

$$
\frac{7,129}{73} \approx
$$

Question: How would you calculate a simple approximation?

$$
\begin{aligned}
\frac{7,129}{73} & =\frac{7,000+100+20+9}{70+3} \\
& \approx \frac{7,000}{70} \\
& =100
\end{aligned}
$$

Rational Functions

- A rational function is a quotient of two polynomials

$$
f(x)=\frac{a_{n} x^{n}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+\ldots+b_{1} x+b_{0}}
$$

- Example on board: sketch

$$
f(x)=\frac{3 x}{4+x}
$$

Try it out!

- Exercise: Sketch the graph of $f(x)=\frac{4 x}{3+5 x^{2}}$.
- Exercise: Give approximations for
$f(1002) \approx$

$$
f(-.03) \approx
$$

$$
f(x)=\frac{4 x}{3+5 x^{2}}
$$

- When x is large, $f(x) \approx \frac{4 x}{5 x^{2}}=\frac{4}{5 x}$.
- When x is small, $f(x) \approx \frac{4 x}{3}$.

$$
f(x)=\frac{4 x}{3+5 x^{2}}
$$

$$
\begin{gathered}
f(1002)=\frac{4(1002)}{3+5(1002)^{2}} \approx \frac{4(1002)}{5(1002)^{2}} \\
\approx \frac{4(1000)}{5(1000)^{2}}=\frac{4}{5000}=.0008
\end{gathered}
$$

$f(x)=\frac{4 x}{3+5 x^{2}}$

$$
\begin{gathered}
f(1002)=\frac{4(1002)}{3+5(1002)^{2}} \approx \frac{4(1002)}{5(1002)^{2}} \\
\approx \frac{4(1000)}{5(1000)^{2}}=\frac{4}{5000}=.0008
\end{gathered}
$$

$$
f(.03)=\frac{4(.03)}{3+5(.03)^{2}} \approx \frac{4(.03)}{3}=.04
$$

Hill Functions (Archibald Hill, 2010)

- A Hill function is a function of the form

$$
f(x)=\frac{A x^{n}}{a^{n}+x^{n}}
$$

for some constants A, a, n.

Enzyme Kinetics, single substrate

$$
E+S \rightleftarrows E S \rightleftarrows E P \rightleftarrows E+P
$$

- Low substrate concentration - reaction rate is limited by substrate.
- High substrate concentration - reaction rate is limited by enzyme.

Enzyme Kinetics, hypothetical double

 substrate$E+2 S \rightleftarrows E S+S \rightleftarrows E S S \rightleftarrows E P P \rightleftarrows E P+P \rightleftarrows E+2 P$
Two copies of substrate required for reaction quadratic dependence on substrate concentration.

Hill Functions

https:
//www.desmos.com/calculator/dttwc7svsx

Holling Predator Response

$$
\begin{gathered}
\text { Type I: } P(x)=A x \\
\text { Type II: } P(x)=\frac{A x}{a+x} \\
\text { Type III: } P(x)=\frac{A x^{n}}{a^{n}+x^{n}}, n \geq 2
\end{gathered}
$$

Recap and Reminders

- Asymptotic approximation
- Works for sums and differences.
- Doesn't work for products and quotients!
- Sketching rational functions - approximate the numerator and denominator.
- Hill functions
- n, A, a
- Enzyme kinetics
- Predator response
- Reminder - Office hours survey on canvas page.

